๋ณธ๋ฌธ ๋ฐ”๋กœ๊ฐ€๊ธฐ
Projects/๐Ÿช Convenience Store Location Analysis

[ํ”„๋กœ์ ํŠธ ์Šคํ„ฐ๋””] ํšŒ๊ท€ ๋ฌธ์ œ ํ‰๊ฐ€ ์ง€ํ‘œ

by ISLA! 2023. 9. 14.

 

LightGBM์€ ํšจ์œจ์ ์ธ ๋ถ€์ŠคํŒ… ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•˜๋Š” ๋จธ์‹ ๋Ÿฌ๋‹ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์ด๋‹ค.

๋ณธ ์„ธ๋ฏธ ํ”„๋กœ์ ํŠธ๋Š” ํšŒ๊ท€ ๋ฌธ์ œ์— ํ•ด๋‹นํ•˜๋‹ˆ LightGBM์œผ๋กœ ๋ชจ๋ธ ํ•™์Šตํ•˜๊ณ , ํ‰๊ฐ€ ์ง€ํ‘œ๋ฅผ ์„ค์ •ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ฐพ์•„๋ณด๊ธฐ๋กœ ํ–ˆ๋‹ค.

 

LightGBM์˜ ํ‰๊ฐ€ ์ง€ํ‘œ ์ข…๋ฅ˜(ํšŒ๊ท€๋ฌธ์ œ)

  • LightGBM์€ LightGBMRegressor ํด๋ž˜์Šค๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ํšŒ๊ท€ ๋ชจ๋ธ์„ ํ•™์Šตํ•œ๋‹ค.
  • ํšŒ๊ท€ ๋ฌธ์ œ์—์„œ ์‚ฌ์šฉ๋˜๋Š” ํ‰๊ฐ€์ง€ํ‘œ๋Š” ๋ฐ์ดํ„ฐ ํŠน์„ฑ์— ๋”ฐ๋ผ ์„ ํƒํ•  ์ˆ˜ ์žˆ์œผ๋‹ˆ, ์ ์ ˆํ•œ ํ‰๊ฐ€ ์ง€ํ‘œ๋กœ ๋ชจ๋ธ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€, ๋น„๊ตํ•˜์—ฌ ์ตœ์ ์˜ ๋ชจ๋ธ์„ ์„ ํƒํ•ด์•ผ ํ•œ๋‹ค.

 

๐Ÿฅ‘ ํ‰๊ท  ์ œ๊ณฑ ์˜ค์ฐจ (MSE) ์˜ˆ์‹œ

from lightgbm import LGBMRegressor
from sklearn.metrics import mean_squared_error

# LightGBM ํšŒ๊ท€ ๋ชจ๋ธ ์ƒ์„ฑ ๋ฐ ํ•™์Šต
model = LGBMRegressor()
model.fit(X_train, y_train)

# ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ์˜ˆ์ธก ๊ฐ’ ๊ณ„์‚ฐ
y_pred = model.predict(X_test)

# MSE ๊ณ„์‚ฐ
mse = mean_squared_error(y_test, y_pred)
print("Mean Squared Error:", mse)

 

๐Ÿฅ‘ ํ‰๊ท  ์ œ๊ณฑ ์˜ค์ฐจ (MAE) ์˜ˆ์‹œ

from lightgbm import LGBMRegressor
from sklearn.metrics import mean_absolute_error

# LightGBM ํšŒ๊ท€ ๋ชจ๋ธ ์ƒ์„ฑ ๋ฐ ํ•™์Šต
model = LGBMRegressor()
model.fit(X_train, y_train)

# ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ์˜ˆ์ธก ๊ฐ’ ๊ณ„์‚ฐ
y_pred = model.predict(X_test)

# MAE ๊ณ„์‚ฐ
mae = mean_absolute_error(y_test, y_pred)
print("Mean Absolute Error:", mae)

 

๐Ÿฅ‘ R² ๊ฒฐ์ •๊ณ„์ˆ˜(R-squared) ์˜ˆ์‹œ

from lightgbm import LGBMRegressor
from sklearn.metrics import r2_score

# LightGBM ํšŒ๊ท€ ๋ชจ๋ธ ์ƒ์„ฑ ๋ฐ ํ•™์Šต
model = LGBMRegressor()
model.fit(X_train, y_train)

# ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ์˜ˆ์ธก ๊ฐ’ ๊ณ„์‚ฐ
y_pred = model.predict(X_test)

# r2 ๊ณ„์ˆ˜ ๊ณ„์‚ฐ
r2 = r2_score(y_test, y_pred)
print("R-squared:", r2)
728x90